$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{D}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{M}$

OTCQB: LWLG

ECOC Market Focus:

"Polymer modulators with >50GHz performance for power consumption reduction at 400, 800, and 1600 Gbaud aggregated datarates"

Michael Lebby CEO Lightwave Logic Inc

R Copyright 2019 Lightwave Logic
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Faster by Design

Safe Harbor

The information in this presentation may contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. You can identify these statements by use of the words "may," "will," "should," "plans," "explores," "expects," "anticipates," "continue," "estimate," "project," "intend," and similar expressions. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those projected or anticipated. These risks and uncertainties include, but are not limited to, general economic and business conditions, effects of continued geopolitical unrest and regional conflicts, competition, changes in technology and methods of marketing, delays in completing various engineering and manufacturing programs, changes in customer order patterns, changes in product mix, continued success in technological advances and delivering technological innovations, shortages in components, production delays due to performance quality issues with outsourced components, and various other factors beyond the Company's control.

Slide presentation will be posted at website LIGHTWAVE LOGIC M

I Latest Press Release	ELatest Media Coverage	E Resource Center Updates
Sep 19, 2019 Lightwave Logic Makes the Case for its Energy-saving Designer Molecules at ECOC 2019	Jun 19, 2019 PIC International 2019 Surpasses Expectations, Sets New Benchmarks (LWLG wins one of the awards)	World Technology Mapping Forum Presentations & White Papers 2019 Annual Meeting of Stockholders

(P210

L I G H T W A V E L O G I C ...

FASTER BY DESIGN

Creating Solutions For Moving More Data. Faster, Easier And Simpler.

www.lightwavelogic.com

Sit back...relax...

Key trends

Target Markets: large & facing a growing gap

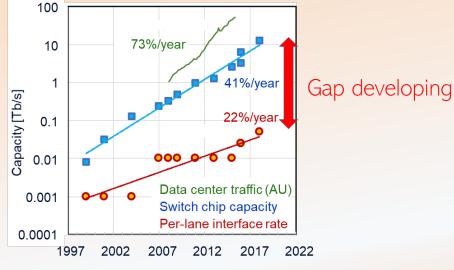
- Market environment
- Market gap
- Market technology opportunities
 - E Faster devices,
 - Lower power,
 - Lower cost,
 - Robustness
- Roadmap update
- Summary

NB: These green bars give a summary of each slide

Warning: Traffic jams on the information superhighway

LIGHTWAVE LOGIC 🛛

 Network cost and energy have become the new hot spot for data providers. This is the problem we seek to address.



Cost and energy are now focus areas...

The problem is the speed limit of the optics...

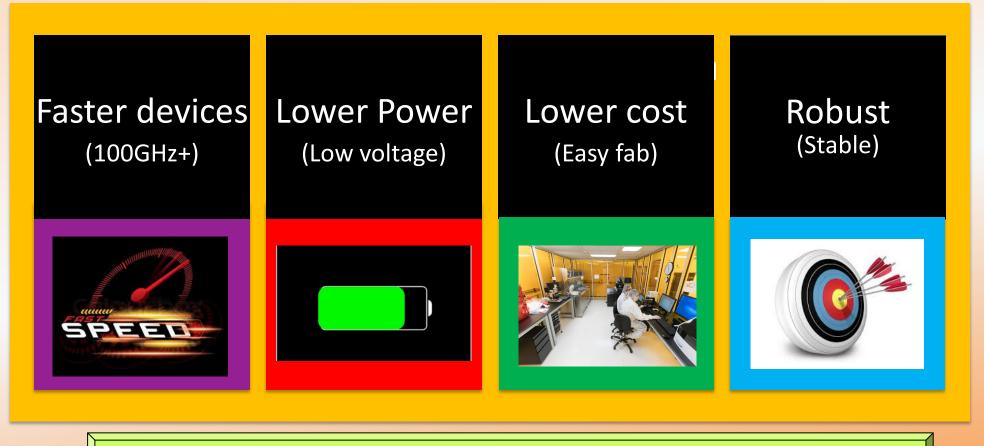
L I G H T W A V E L O G I C 🛛

• The Network is falling behind the traffic growth

Source: Peter Winzer, Nokia, "Scaling Optical Networking Capacity: Options and Solutions"

Huge data volumes are enabled by **low cost and energy** for computation and storage. Thank you Moore's Law for semiconductors.

The big data pipes inside datacenters, between datacenters, and from datacenters to end-users are **fiber optic**. The problem? No Moore's Law for optics.


Radical innovation is needed...

Delivering radical innovation...

LIGHTWAVE LOGIC 🛛

Photonics must deliver solutions:

To enable faster, lower power, lower cost internet...

Source: Lightwave Logic (LWLG)

8/19/2020 Page 7 | © Lightwave Logic, Inc.

Delivering radical innovation... LIGHTWAVE LOGIC 🛛 Photonics must deliver solutions: Faster devices Lower Power Robust Lower cost (Stable) (100GHz+) (Low voltage) (Easy fab) SPEED To enable faster, lower power, lower cost internet...

Source: Lightwave Logic (LWLG)

8/19/2020 Page 8 | © Lightwave Logic, Inc.

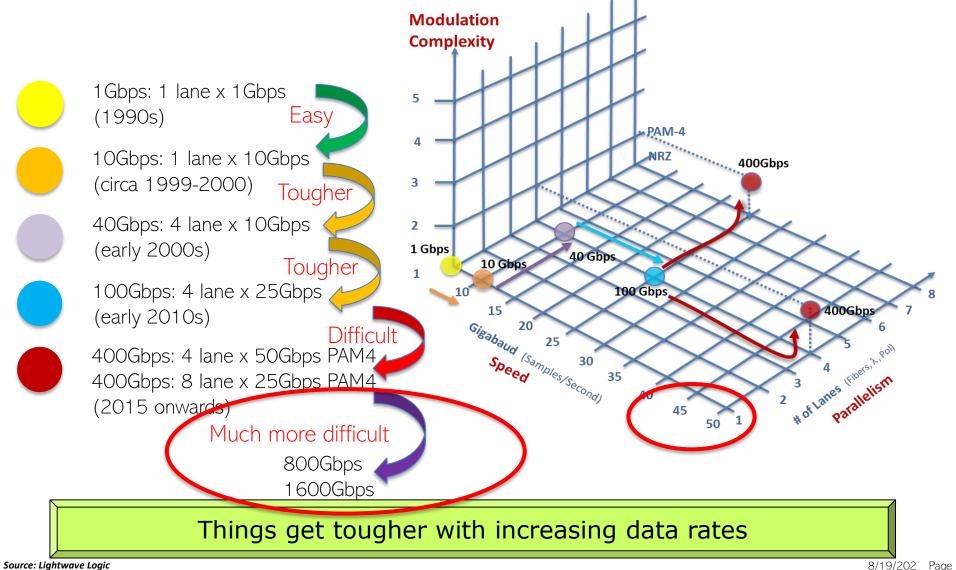
$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{O}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{T}$

OTCQB: LWLG

Faster devices...

Fastest by Design

® Copyright 2019 Lightwave Logic

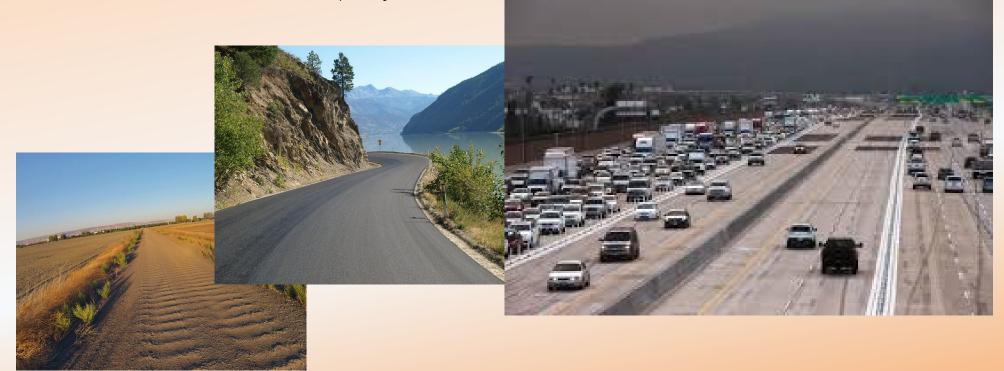


But the internet has been growing fine, so what's changed?

Faster by Design

Historical perspective

LIGHTWAVE LO<mark>gic</mark> »


8/19/202 Page 11 | © Lightwave Logic, Inc.

Traffic capacity: road analogy

LIGHTWAVE LOGIC 🛛

Good roads: Faster cars: more traffic capacity

More lanes: more traffic capacity

Already did the easy things like paving the road and adding more lanes

8/19/2020 Page 12 | © Lightwave Logic, Inc.

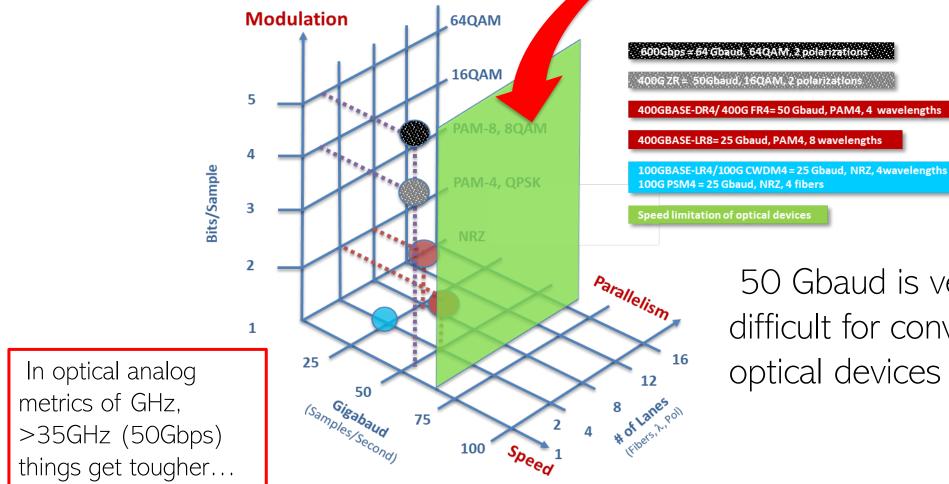
Traffic handling: road analogy

LIGHTWAVE LOGIC 🛛

Industry has already done the harder stuff like 'higher order modulation'

What about speed?

L I G H T W A V E L D G I C 🛛



Speed has hit a plateau...

8/19/2020 Page 14 | © Lightwave Logic, Inc.

Speed limited by conventional photonics

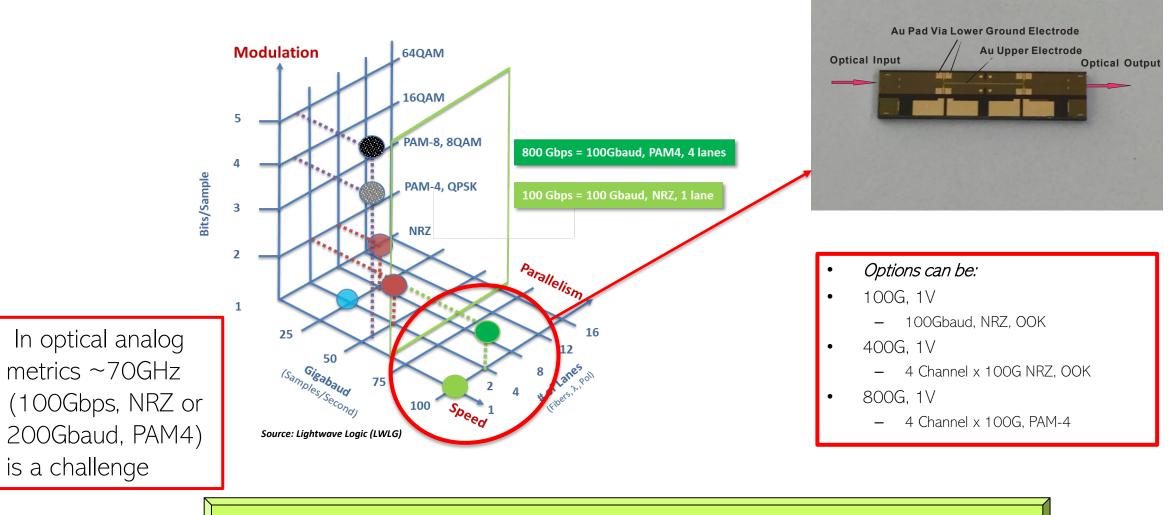
LIGHTWAVE LOGIC 🛛

50 Gbaud is very difficult for conventional optical devices

Speed limited by device physics

Plastic polymers break the speed limit...

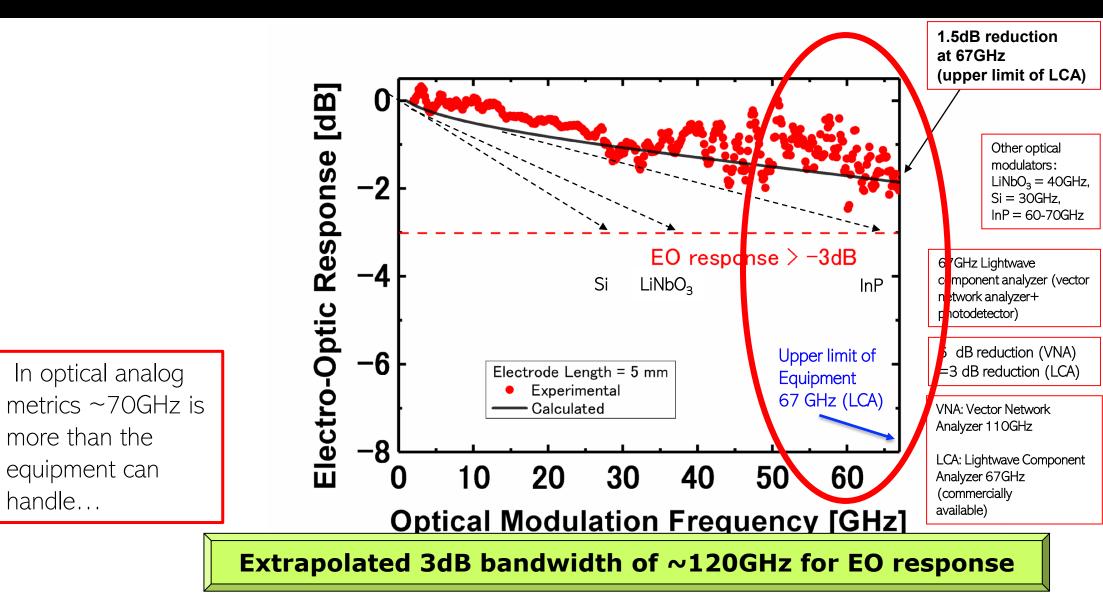
LIGHTWAVE LOGIC 🛛



Polymers double the native data traffic to 100Gbps (before counting multiple lanes, stacking...)

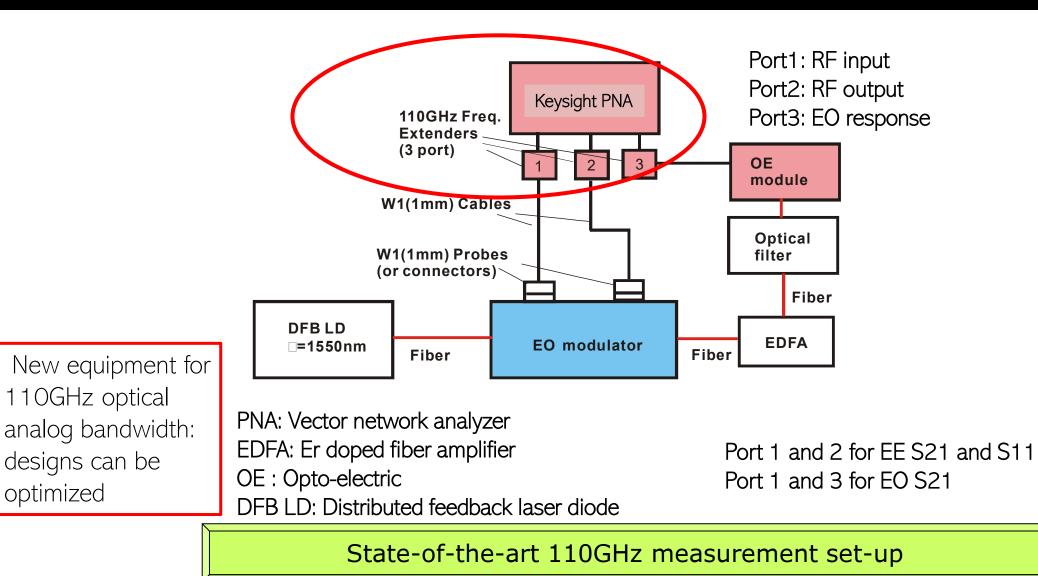
8/19/2020 Page 16 | © Lightwave Logic, Inc.

Innovation to break the speed barrier


LIGHTWAVE LOGIC 🛛

Renewed ability to grow traffic capacity

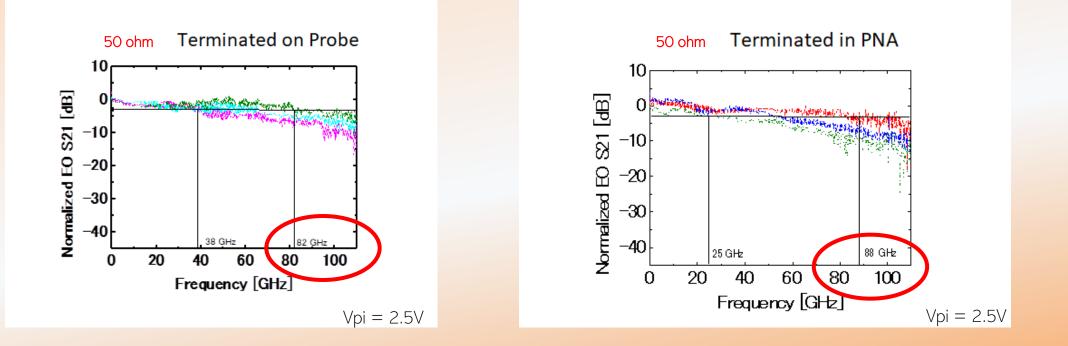
8/19/202 Page 17 | © Lightwave Logic, Inc.


Electro-Optic Response on Lightwave Component Analyzer

Source: Lightwave Logic (LWLG); Yasufumi Enami (University of Kochi, Japan; University of Arizona)

EO frequency response measurements

L I G H T W A V E L O G I C 🛚

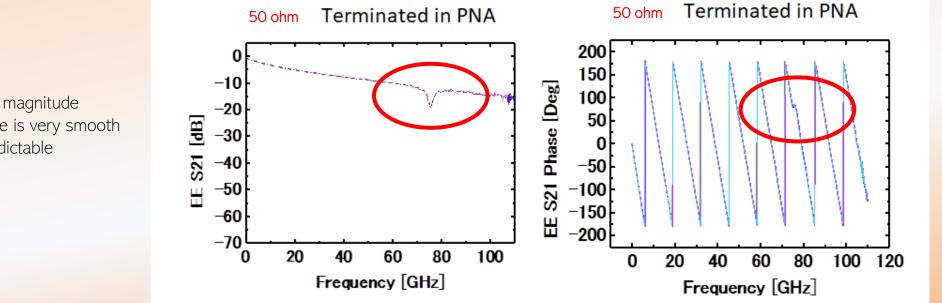


8/19/202 Page 19 | © Lightwave Logic, Inc.

EO Polymer RWG Modulator

LIGHTWAVE LOGIC 🛛

Polymer modulator analogue optical bandwidth



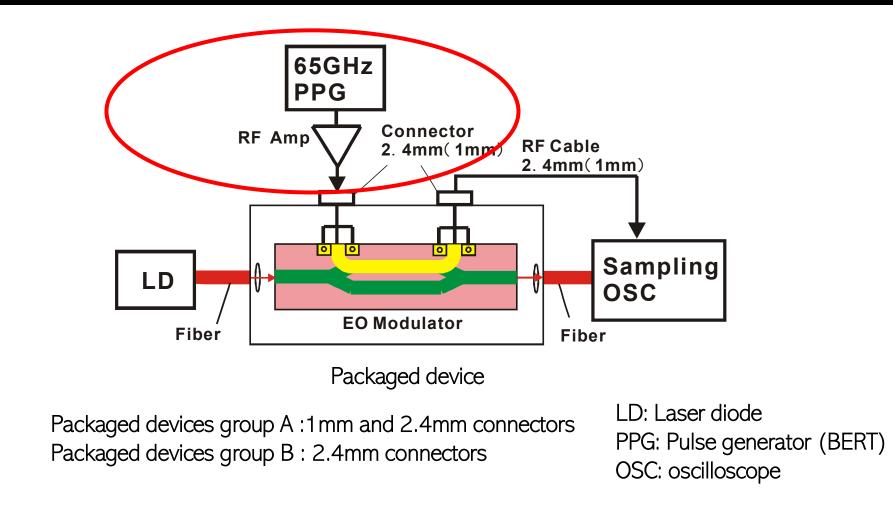
Measurement at >70GHz is very sensitive

Electrical characterization

LIGHTWAVE LOGIC 🛛

- EE S21 linear magnitude and phase
 - With small calibration glitch at ~75GHz

EE S21 phase response is very linear and predictable

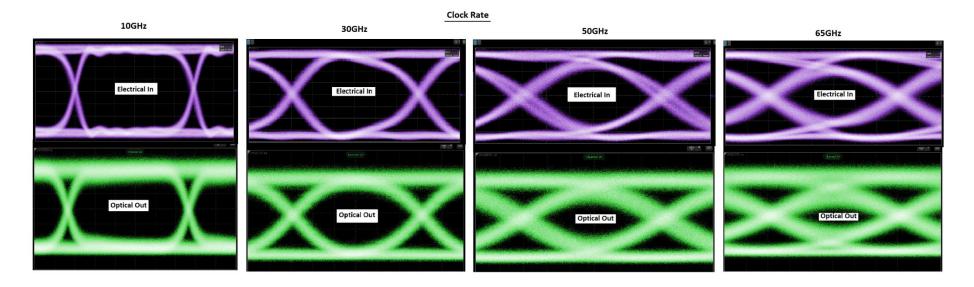

EE S21 magnitude response is very smooth and predictable

Smooth EE S21 magnitude

8/19/2020 Page 21 | © Lightwave Logic, Inc.

Eye diagram measurements

LIGHTWAVE LOGIC 🛛

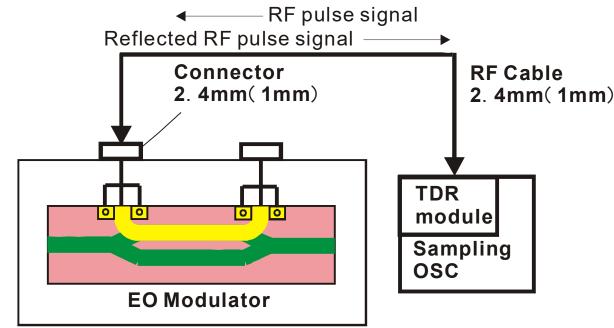


Packaged modulator set-up

Eye diagram status

LIGHTWAVE LOGIC 🛛

- Using DCA/BERT system
- Careful measurements of packaged polymer MZ
- Optical eyes follow input electrical signal well
- Open eyes at 65GHz (NRZ)



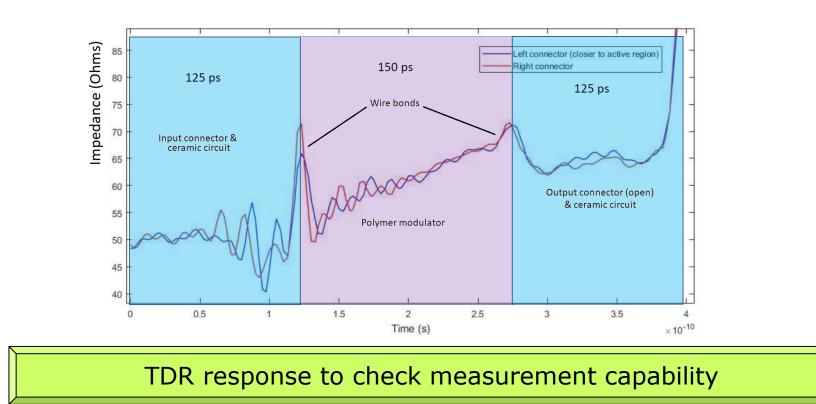
Eye diagram partly limited by input signal

8/19/202 Page 23 | © Lightwave Logic, Inc.

TDR measurement capability review

L I G H T W A V E L O G I C 🛛

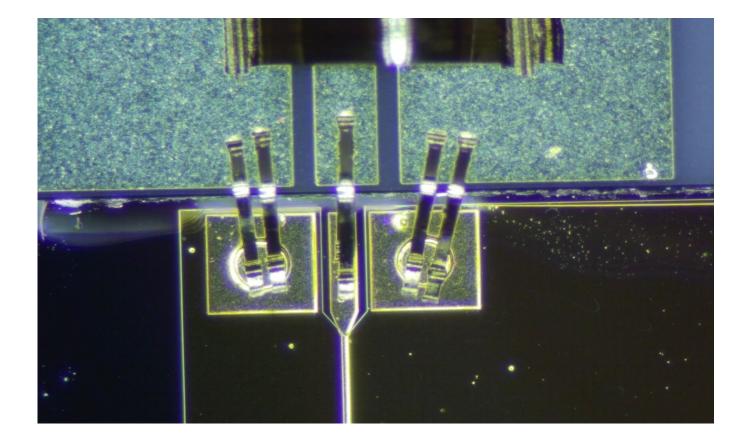
Packaged devices group A :1 mm and 2.4 mm connectors Packaged devices group B : 2.4 mm connectors TDR: Time domain reflectometry Examine impedance matching in packaged device


Checking measurement capability through reflected signaling

8/19/202 Page 24 | © Lightwave Logic, Inc.

TDR to check measurement capability

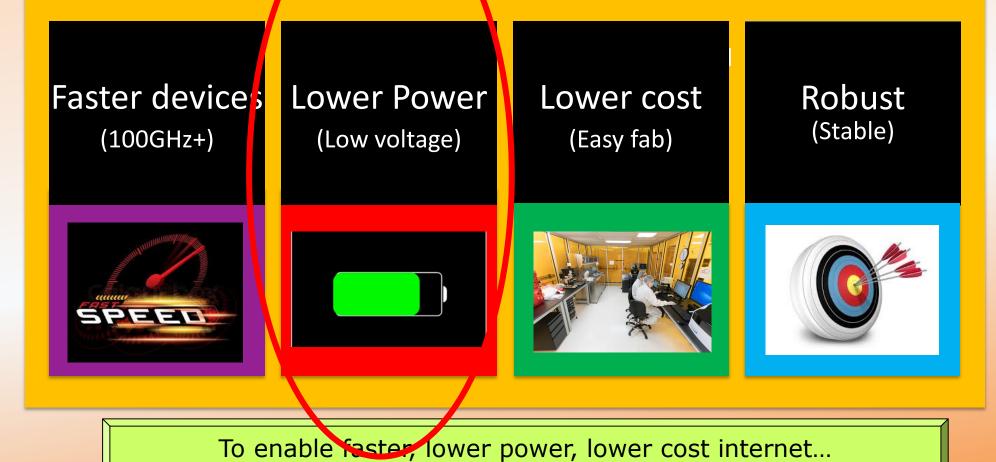
L I G H T W A V E L O G I C 🛛


- Using TDR from Keysight
- TDR measurements allows the determination of impedance discontinuities along the rf path and assists in making improvements
- TDR measurements show reflections that need to be optimized

8/19/202 Page 25 | © Lightwave Logic, Inc.

Bond-ribbon Termination

LIGHTWAVE LOGIC 🛛


TDR helps reduce reflections and allows improved designs

8/19/202 Page 26 | © Lightwave Logic, Inc.

Delivering radical innovation...

LIGHTWAVE LOGIC 🛛

Photonics must deliver solutions:

Source: Lightwave Logic (LWLG)

8/19/2020 Page 27 | © Lightwave Logic, Inc.

$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{O}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{T}$

OTCQB: LWLG

Lower power

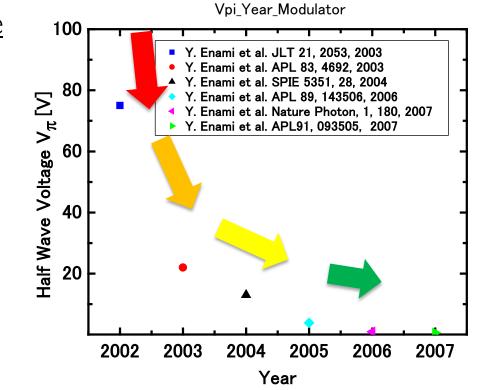
® Copyright 2019 Lightwave Logic

Fastest by Design

Importance of Larger r_{33}

Only free variable is r_{33}

LIGHTWAVE LOGIC M

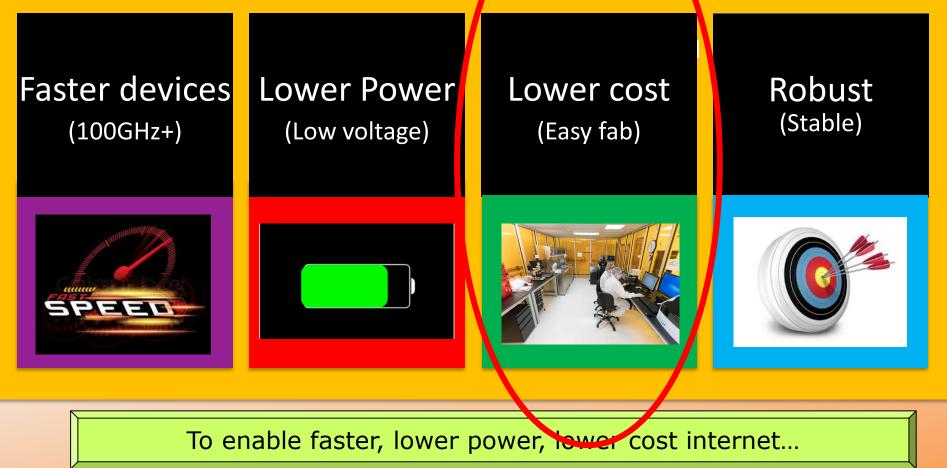

- Frequency response is inversely proportional to electrode length
 - Shorter electrode \rightarrow More Gbps
- BUT Vpi is ALSO inversely proportional to electrode length
 - Shorter electrode → Larger Vpi
 - Larger $r_{33} \rightarrow$ Shorter electrode \rightarrow More Gbps \rightarrow Same or Smaller Vpi 3dB Bandwidth vs Length 250 200 dB Bandwidth 150 Vpi vs r33 80+GHz 100 2.5 7.5 10 12.5 15 17.5 20 22.5 5mm Electrode Length (mm) Vpi (V) Vpi vs Length for r33 = 30pm/V Length = 2.5mm 20 1V Length = 5mm 15 Length = 10mm 0.1 Vpi (V) 10 6-7V 100 150 200 250 300 0 50 350 400 r33 (pm/V) 0 2.5 5 7.5 10 12.5 15 17.5 20 ~200pm/V 5mm Electrode Length (mm) Large r₃₃ is key to high performance and low voltage

8/19/2020 Page 29 | © Lightwave Logic, Inc.

LIGHTWAVE LOGIC 🛛

Direct drive CMOS \rightarrow saves power

- Lower voltage operation <u>save</u> <u>power</u>
- Also means the modulators can be driven directly from a CMOS chip
- No driver chips necessary
 - Saves even more power
 - Also saves \$\$\$


Source: Lightwave Logic (LWLG); Yasufumi Enami (University of Kochi, Japan; University of Arizona)

Polymer modulators are *driverless, low power, and save \$\$\$*

Delivering radical innovation...

LIGHTWAVE LOGIC 🛛

Photonics must deliver solutions:

Source: Lightwave Logic (LWLG)

8/19/2020 Page 31 | © Lightwave Logic, Inc.

$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{O}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{T}$

OTCQB: LWLG

Lower cost...


Fastest by Design

® Copyright 2019 Lightwave Logic

Simple, low cost fabrication

Fabrication equipment and process is simple

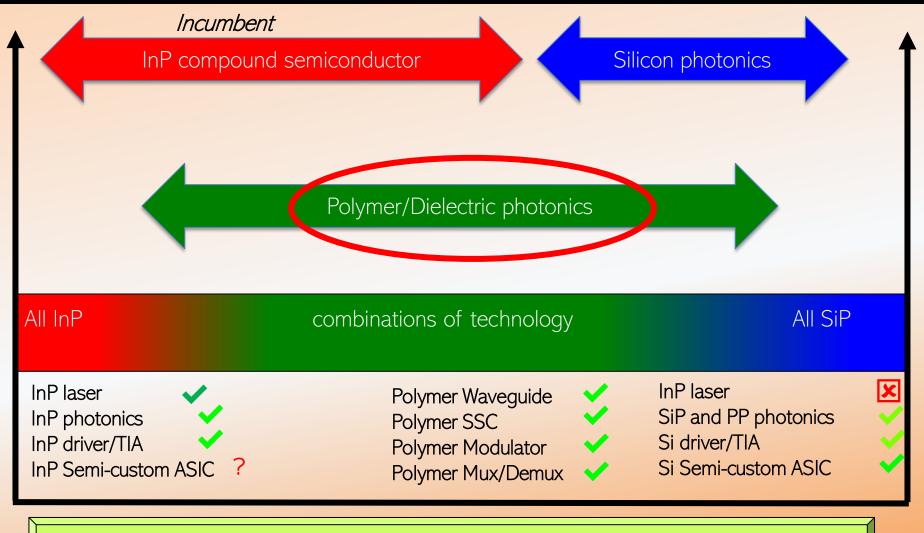
- No exotic equipment needed
 - Standard photolithography to pattern
 - Wafer scalability
 - Minimize cycle time

Lower costs can be enabled through simplicity in fabs

LIGHTWAVELOGIC»

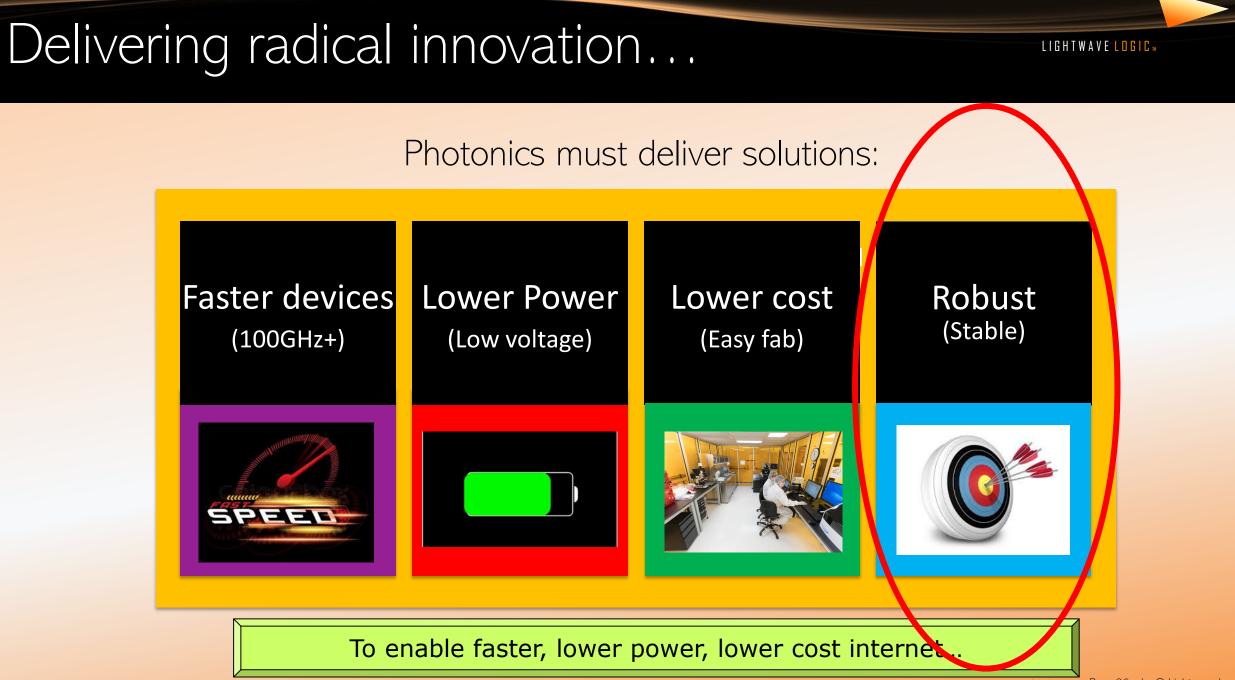
Our competitive advantage starts with our material SWAVE LOGIC.

- Our Perkinamine[™] family of materials are proprietary and we control the synthesis in-house.
- We have additional advantages through control of the whole stack—from materials to device and package designs. This synergy gives us more knobs with which to optimize performance and cost.


Our active molecules are of similar complexity to medical drugs Their performance characteristics can be tailored for each application

Lower costs can be enabled through chemistry design

8/19/2020 Page 34 | © Lightwave Logic, Inc


Integrate platforms \rightarrow Hybrid solutions

LIGHTWAVE LOGIC 🛛

Lower costs enabled through integration of hybrid technologies

8/19/2020 Page 35 | © Lightwave Logic, Inc.

Source: Lightwave Logic (LWLG)

8/19/2020 Page 36 | © Lightwave Logic, Inc.

$\mathsf{L} \mathsf{I} \mathsf{G} \mathsf{H} \mathsf{T} \mathsf{W} \mathsf{A} \mathsf{V} \mathsf{E} \mathsf{L} \mathsf{O} \mathsf{G} \mathsf{I} \mathsf{C} \mathsf{M}$

OTCQB: LWLG

Robust...

Fastest by Design

® Copyright 2019 Lightwave Logic

PIC semiconductor robustness/reliability

I G H T W A V E L <mark>D G I C</mark> 🛚

- Telecommunications always relied on Telcordia testing (GR-468 etc)
 - 10-20 year lifetime, low FIT rates, accelerated testing
- Datacommunications (datacenters) looked at simplifying R&QA to reduce cost
 - Recent datacenter requirements proposed 3yr fork-lift equipment changes, and reduced R&QA expectations
 - Today's datacenter folks are now looking to re-establish high reliability testing to reduce failure rates from 1000s of photonics equipment

Net net \rightarrow R&QA is still critical and needs to be taken very seriously

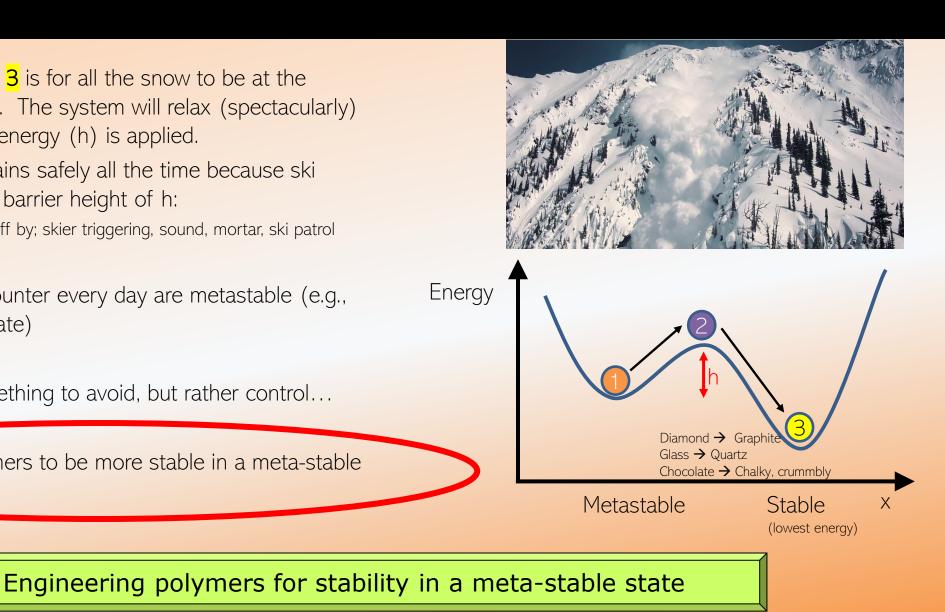
Next generation PICs must aim towards Telcordia requirements

R&QA needs to be aimed between datacom and telecom today

Electro-optic polymers have a negative perception

LIGHTWAVE LOGIC 🛛

- Universal agreement on the EO performance of poled polymers
 - For example: 100GHz BW, Velocity match, Low Vpi, High r33...
- Universal *skepticism* on the stability of that performance.
 - "Organic isn't as stable as inorganic"
 - The same arguments were made against LCDs and OLEDs also...
- A key technical challenge facing EO polymers:
 - Stabilizing the meta-stable state...


Stability is one of the keys to build positive perception in polymers

Stabilizing a meta-stable state

LIGHTWAVE LOGIC M

- The lowest energy state 3 is for all the snow to be at the bottom of the mountain. The system will relax (spectacularly) from **1** to **3** if sufficient energy (h) is applied.
- Yet we ski down mountains safely all the time because ski resorts can manage the barrier height of h:
 - Avalanche h can be set off by; skier triggering, sound, mortar, ski patrol
- Many materials we encounter every day are metastable (e.g., diamonds, glass, chocolate)
- Metastability is not something to avoid, but rather control...

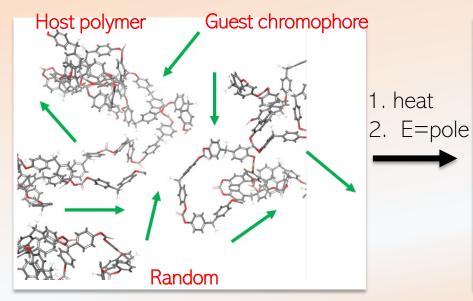
We've engineered polymers to be more stable in a meta-stable state

8/19/2020 Page 40 | © Lightwave Logic, Inc.

Engineering the barrier height for stability

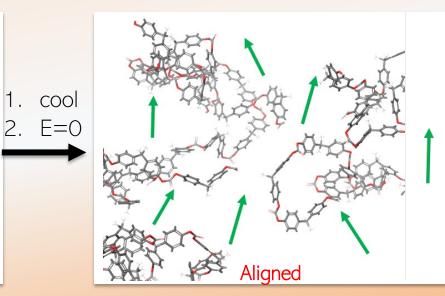
- Poled polymers will slowly relax to 3 at a rate controlled by barrier height h
- Engineering challenge is to make barrier h large
- No laws of physics need to be broken...

h can be controlled by careful molecular design and the power of synthetic organic chemistry



Barrier **h** can be engineered by molecular design

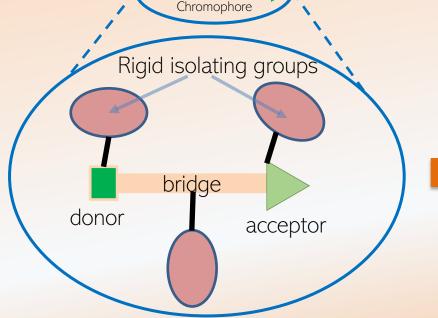
Optimizing the molecular design for stability


L I G H T W A V E L O G I C 🛛

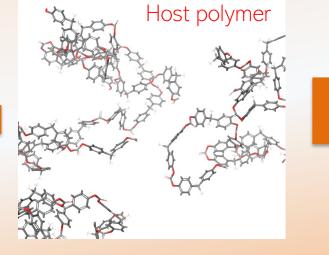
- The higher the rigidity of the polymer composite, the higher barrier h is (more stable)
- The more surrounded the chromophore dipoles are, the higher barrier h is (more stable)

EO polymers are prepared by adding high concentrations of a "guest" chromophore to an amorphous "host" polymer. The composite is heated to the glass transition temperature to liquify the polymer and the poling field is applied to align the chromophores within the polymer matrix.

Aligned

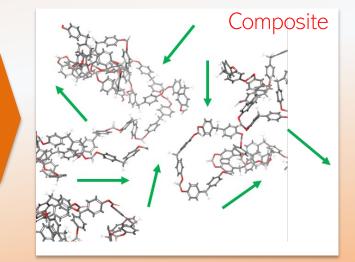


• The sample is cooled with the field applied to trap the poled order in the glassy state.


Barrier **h** is optimized by mix of chromophore and polymer

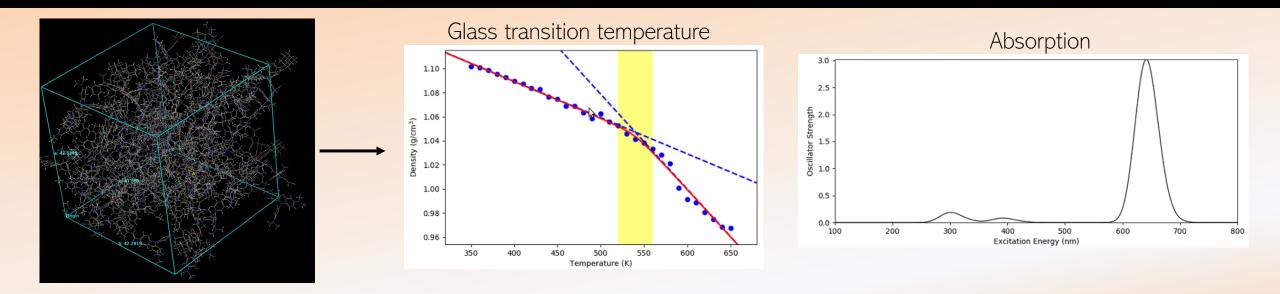
Design strategy for increasing barrier h at the molecular level LIGHTWAVE LOGIC,

• Chromophores can be modified via synthetic organic chemistry to act as antiplasticizers and increase the rigidity (*and barrier h*) of the composite polymer.



 Rigid isolating groups reduce dipolar interactions and *increase rigidity of polymer composite (h)*

 Rigid, high glass transition temperature (T_g) *increases h*

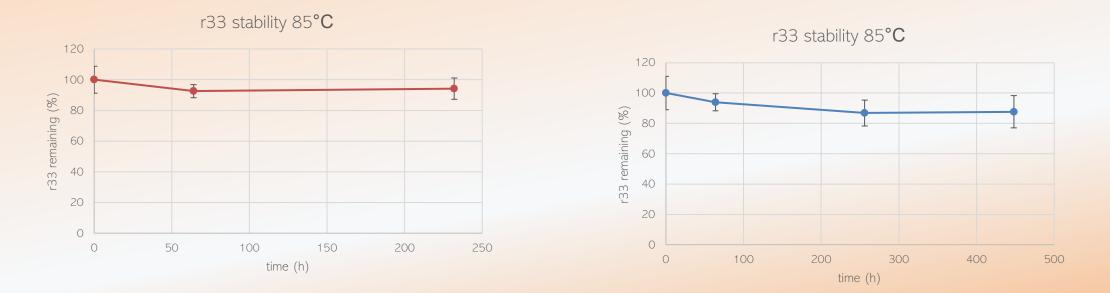

Molecular design is critical

 Rigid, high glass transition temperature (T_g) *increases h*

Molecular Design: simulation guided design

L I G H T W A V E L O G I C 🛛

- Many interdependent parameters (besides rigidity of the composite) that need consideration: Dipole, Hyperpolarizability, Loss (absorption), Thermal stability, Poling efficiency, Solubility
- All of these are calculable with a combination of quantum mechanical (DFT) and molecular dynamics methods.
- Apply the same tools the pharmaceutical industry uses to engineer drugs and the display industry uses to engineer OLEDs to electro-optic polymers.

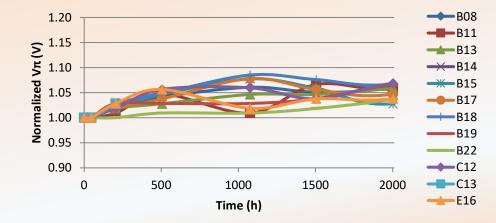

Molecular design through simulation tools increases cycles of learning

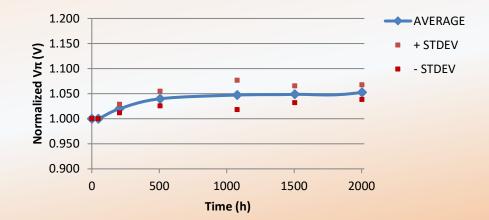
8/19/2020 Page 44 | © Lightwave Logic, Inc

Higher stability of meta-stable state

LIGHTWAVE LOGIC 🛛

• Improved temporal stability of r33 @ 85°C


Result of increasing the barrier h of meta-stable state


8/19/2020 Page 45 | © Lightwave Logic, Inc.

Higher stability of meta-stable state

LIGHTWAVE LOGIC 🛛

Improved temporal stability of Vpi @ 85°C

Result of increasing the barrier h of meta-stable state

8/19/2020 Page 46 | © Lightwave Logic, Inc.

$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{O}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{T}$

OTCQB: LWLG

Roadmap update

® Copyright 2019 Lightwave Logic

Fastest by Design

Slide presentation will be posted at website

Creating Solutions For Moving More Data. Faster, Easier And Simpler

www.lightwavelogic.com

Sit back...relax...roadmaps are very detailed...

8/19/2020 Page 48 | © Lightwave Logic, Inc.

Roadmaps: What did we predict in 2016?

					Purple Brick Wall = Technology cost barrie		LIGHTWAVE LOGIC		
	2017	2018	3	2020		2022	2024	2026	
Modules/TxRx Data rate density Form factor	100Gbps 10 Tbps/1 QSFP		400Gbps coQSFP	25Tbps/1U <i>DSFP</i>	Purple Brick Wall Purple Brick Wall	Purple Brick Wall 100Tbps/1U <i>SFP+ (new)</i>		OGbps	
Typical link reach Ind wish (@400Gbps) <i>Industry plan</i>	<10km \$5/Gbps >\$10/Gbps (r	<10km <2km)	<2k \$2/Gbps <\$5/Gbp	Purple Brick Wall	\$1/Gbps	<2km <i>\$1/Gbps</i>	<2km <s0.5 gbps<br="">\$0.5/Gb</s0.5>	ps	
Typical link reach Ind wish (@400Gbps) <i>Industry plan</i>	10-100m <\$1/Gbps	\$1/Gbps	5-50m <\$0.5/Gbps	Purple Brick Wall	<\$0.25/Gbp		<\$0.05/Gbps /Gbps	<\$0.15/Gbps	
InP Monolithic	100 devices 25Gbps 50Gbp PIC WDM Tx & Rx NRZ/PAM4 NRZ/P 3" Wafer/fab	oe AM4-8	00 devices 100Gbps IC Int driver/TIA 5C Wafer/fab	NRZ/PAM4-16		5 Purple Brick Wall / <i>TIA 100Gbps (se</i> Purple Brick Wall ent	100,000 devices hal) OEIC AS dient-side mee Brok Wall 8" Water/fab?	'C 50Gbps	
SiP & InP/SiGe hybrid	10 devices 25Gbps 50Gbp PIC WDM Tx & Rx NRZ/PAM4 NRZ/P 6" Wafer/fab	100 devices s OE AM4-8	IC Int driver/TIA 50	4 & 6" Wafer/fab 100Gl Gbps OEIC NRZ/PAM4-16 8 & 12" Wafer/fal	100 ops Purple Brid ht driver/TIA 100Gb	00 devices xWall 400Gbps ps (serial) F Purple Brick Wall	Purple Brick Wall	10,000 devices IC 50Gbps	
Polymer Photonics	25Gbps 50Gbp PIC WDM/MZ Moc NRZ/PAM4 NRZ/P 3-4" Wafer/fab	10 devices s (Laser-Mod) I Tx & Rx AM4-8	OEIC Int d	100 devices	ops (laser-Mod) 50Gbps OE	Purple Brick Wall	1000 devices Purple Brick Wall p/InP) 100Gbps (serial) Purple Br <i>Hient-side</i> 8" Water/fab	ckWall CASIC 50Gbps	
Dielectric Photonics	100 devices 25Gbps 50Gbp PIC Tx & Rx NRZ/PAM4 NRZ/P 6" Wafer/fab	AM4-8	OEIC Int d	ces 100Gbps iver/TIA 50Gbps NRZ/PAM4-16 8 & 12" Wafer/fat	Purple Brick Wall)Gbps <i>OEIC Int C</i> Purple Brick Wall	100,000 devices PurpleBrickWall friver/TIA 100Gbps (serial) client-side rpleBrickWall 15" Wafer/fab		
GaAs (VCSEL)	10 devices 25Gbps 50Gbp VCSEL PIC 25Gbp NRZ/PAM4 NRZ/P _3_4" Wafer/fab_	s VCSEL PIC 50	P	rick Wall 1000 100Gbps (VCSEL urple Brick Wall 1-16	(<i>I-Mod</i>) Purple Brick		10,000 devices 400Gbps (VCSEL-Mod) © 100Gbps (serial) client-side		

Actually pretty good \rightarrow TxRx 400Gbps, <\$5/Gbps, 50Gbps+ devices

Purple Brick Wall

New draft in 2019 \rightarrow Where are we going?

LIGHTWAVE LOGIC 🛛

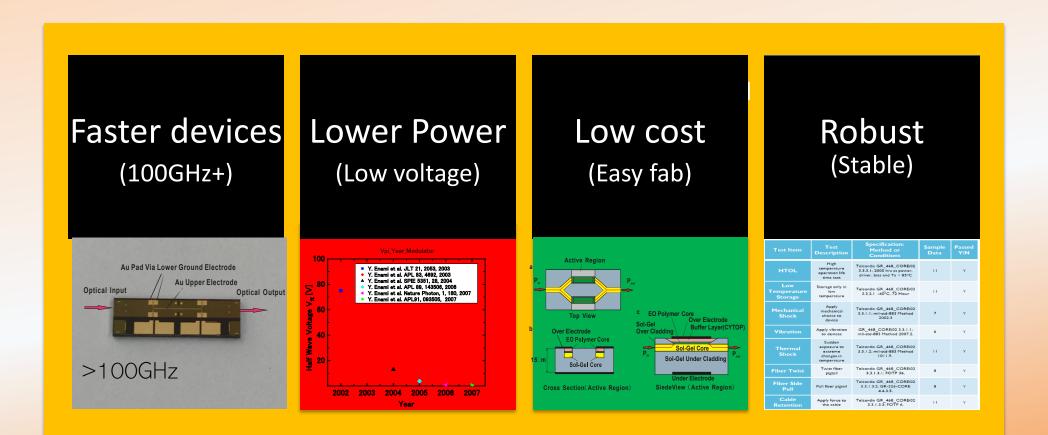
	2019	2020	2022	2024	2026	2028
Modules/TxRx Data rate density Form factor	400Gbps 25 Tbps/1U Q/OSFP	800GI J OSFP/OBO/C	100Tbps/1U	600Gbps BridxWall 400Tbps/1U eBridxWall <i>Co-Pkg/CoB</i>	32000 1600Tbps/1U Micro-Co-Pkg/CoB	Gbps
Typical link reach Ind wish (@400Gbps) <i>Industry plan</i>	<10km \$2/Gbps >\$5/Gbps (<2	<10km \$1/Gbps 2km) <\$2	<2km Purple Brick Wall /Gbps	5/Gbps <2km \$0.5/Gbps	<\$0.2/Gbps \$0.2/Gbps	5
Typical link reach Ind wish (@400Gbps) <i>Industry plan</i>	10-100m <\$1/Gbps	5-50m <\$0.5/Gb \$1/Gbps	OS Purple Brick Wall	1-25m \$0.25/Gbps \$0.25/	<\$0.05/Gbp\$ 'Gbps	<\$0.15/Gbps
InP Monolithic	100 devices 25GHz 50GHz PIC WDM Tx & Rx (NRZ/PAM4 NRZ/PA		Hz 90 TA 50Gbps (50GHz) PurpleBri			50Gbps (50GHz)
SiP & InP/SiGe hybrid	3" Wafer/fab 10 devices 25GHz 50GHz PIC WDM Tx & Rx (NRZ/PAM4 NRZ/PA	4" Wafer/fab 100 devices PumpleBridd (30GHz) OEIC Int driver/7 M4-8 NRZ/PAM4-16	TIA 50Gbps (50GHz) Puple Bric Coherent client-side	Purple Brick Wall Purple Brick Wall 70GHz (40 kWall Purple Brick Wall Coherent D	8" Water/fab? 10,000 devices 00Gbps) 0EIC Int driver/TIA 100Gbps (seri 15P-less	al)
Polymer Photonics	6" Wafer/fab 25GHz 50GHz PIC WDM/MZ Mod NRZ/PAM4 NRZ/PA 3-4" Wafer/fab		8 & 12" Wafer/fab 100 devices 10d) 1 Int driver/TIA (SiP/InP) 50GHz NRZ/PAM4-16 4 & 6" Wafer/fab	Purple Brick Wall 00GHz (150Gbps serial)		10.000 devices OEIC ASIC 70GHz
Dielectric Photonics	100 devices 25GHz 50GHz PIC Tx & Rx NRZ/PAM4 NRZ/PA 6" Wafer/fab	OEIC	Purple Brick Wall 7(Int driver/TIA 50GHz Purp	0,000 devices PurpleBrickWall OGHz BrickWall BrickWall PurpleBrickWall	1 <i>00,000 devices</i> 70GHz (400Gbps) <i>OEIC I</i> ht driver/TIA 700 15" Wafer/fab	GHX
GaAs (VCSEL)	100 devices 25GHz 50GHz VCSEL PIC 25GHz NRZ/PAM4 NRZ/PA _6" Water/fab	Purple Brick Wall VCSEL PIC 50GHz Purple	Brick Wall KWall NRZ/PAM4-16 Purple Brick Wall 5	0000 devicas 70GHz (VC VCSEL PIC Coherent c "Wafer/fab	70GHz (100Gbps)	

Purple Brick Wall = Technology cost barrier

800 and 1600Gbps; very high bandwidth 70GHz, co-packaging, low power, hybrid integration, low \$/Gbps

$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{O}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{T}$

OTCQB: LWLG


Summary

® Copyright 2019 Lightwave Logic

Fastest by Design

Electro-optic polymer example

LIGHTWAVE LOGIC 🛛

Our EO polymers enable radical innovation ...

8/19/2020 Page 55 | © Lightwave Logic, Inc

Summary

- Speed today...
 - We as an industry are struggling with >50GHz analogue bandwidth. Higher speeds has to come from increasing complexity of modulation schemes and electronics
 - We can use polymer modulators for 70GHz analogue bandwidth (for 100Gbps NRZ data, 200Gbaud PAM4 data)
 - E.g. 100Gbps single lane NRZ, 400Gbps with 4 lanes NRZ, 800 Gbps with 4 lanes PAM4
- Power today...
 - We as an industry are struggling to bring voltage levels at 70GHz down to 1 Volt for any modulator design
 - ~1V means we can eliminate drivers, use direct drive from CMOS circuitry
- Cost today...
 - MZ modulators are expensive designs using InP, SiPh, LiNbO₃
 - Spin-on fab compatible Polymer MZ fabrication is cost effective Mach-Zehnder fits in OSFP-like transceiver footprints
 - Hybrid integration possible with InP, Si photonics, etc.
- Robust today...
 - Industry expects standard Telcordia specifications for MZ modulators
 - Polymers have achieved GR-468 and are continually improving their stability specifications
- Roadmaps...
 - Predictions have been fairly accurate to date...challenging times ahead

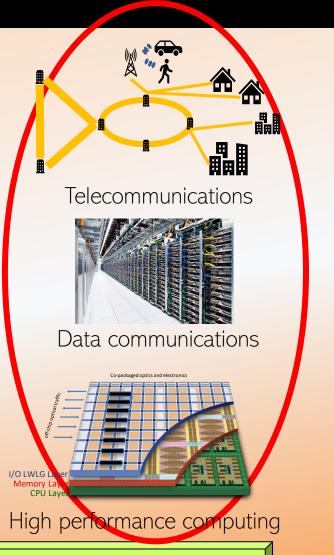
Polymers are quickly becoming an important platform...

$\mathsf{L}\mathsf{I}\mathsf{G}\mathsf{H}\mathsf{T}\mathsf{W}\mathsf{A}\mathsf{V}\mathsf{E}\mathsf{L}\mathsf{D}\mathsf{G}\mathsf{I}\mathsf{C}\mathsf{M}$

OTCQB: LWLG

® Copyright 2019 Lightwave Logic

Fastest by Design


Many opportunities, however, all need robustness

L I G H T W A V E L O G I C 🛚

- 5G systems
- RF over fiber
- Automotive (LIDAR)
- Optical sensing
- Bio-photonic sensing
- Medical
- Instrumentation
- Others...

Maturity (and robustness) in Fiber Comm enables other markets