

LIGHTWAVELOGIC®

Safe Harbor

The information in this presentation may contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. You can identify these statements by use of the words "may," "will," "should," "plans," "explores," "expects," "anticipates," "continue," "estimate," "project," "intend," and similar expressions. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those projected or anticipated. These risks and uncertainties include, but are not limited to, general economic and business conditions, effects of continued geopolitical unrest and regional conflicts, competition, changes in technology and methods of marketing, delays in completing various engineering and manufacturing programs, changes in customer order patterns, changes in product mix, continued success in technological advances and delivering technological innovations, shortages in components, production delays due to performance quality issues with outsourced components, and various other factors beyond the Company's control.

Corporate Overview

Lightwave Logic develops a platform leveraging its proprietary engineered electro-optic (EO) polymers to transmit data at higher speeds with less power

- Large Addressable Market: Optical transceivers market expected to grow to at least \$100B by 2030 chiefly driven by data centers, fiber comm & Al requirements
- **Proprietary EO Polymer Technology:** Supports >3x faster data transmission speeds with ~10x lower power, relieving key bottlenecks in internet infrastructure
- Robust Patent Portfolio: Composed of 70+ patents and patents pending
- Commercialization Underway: Secured initial licensing agreement in May '23
- Robust Balance Sheet: \$31M+ cash position provides significant optionality
- Building a Foundation: Expanded facility and team with in-house control of material supply, device fabrication & package design enables Lightwave to control its own destiny and maintain key trade secrets in-house
- Experienced Leadership: Management and Board are composed of technology and finance experts with 200+ years of combined experience

NASDAQ LWLG

Share Price ¹	\$4.36
Market Cap ¹	\$519.7M
Cash & Cash Equivalents ²	\$31.5M
Debt ²	\$0
Shares Outstanding ³	120.1M
Headquarters	Englewood, CO

1) As of April 5, 2024 2) At Mar. 31, 2024

Innovation is needed to keep up with data traffic

- Lightwave Logic possesses a world class electro-optic polymer material for use in data center applications
- Lightwave polymers can turboboost silicon photonics
- Recent testing results are creating excitement amongst Lightwave's potential customer base

Radical innovation is needed to enable tomorrow's data services within the current framework of existing internet infrastructure

Industry Demand Drivers

Macro-tailwinds driving adoption of next-generation components

Switch Density

Space is limited in data centers and competing solutions generally require a larger footprint than EO polymers

AI, Cloud & Streaming

Computing power required to train and utilize AI systems has been doubling every 2-4 months

Energy Usage

Traffic and computing power is driving power consumption in data centers to extreme levels

Supporting the big macro trends today...and in the future

Award Winning Polymers

LIGHTWAVELOGIC®

Polymers provide unique advantages over legacy technologies

- Materials are polymers
 - Like OLEDs Organic LEDs used for TVs where their polymers generate light: ours switch light
- Modulators are very small
 - So small that they fit easily into pluggable transceivers, the critical devices used to transmit and receive data in data centers
- Polymer modulators have transformational performance head-room for the next decade
- Can integrate other devices with polymer modulators
 - Adding to existing silicon photonics infrastructure as well as multi-channel solutions for higher aggregate speeds

Electro-Optic Polymer slot modulators

Perkinamine® Electro-Optic Polymers

Our polymers are world-class and proven by third parties

Electro-optic polymers can be used to fabricate optical modulators

We create organic chromophores...

- Designed, simulated and modeled in Denver, Colorado
- Manufacturing chemistry facility that can scale volume
- Deep experience with material characterization, testing, lifetime, and reliability

Polymer Modulator Opportunities

Electro-optic polymer modulators for transceivers suppliers

Electro-optic polymer modulators for Silicon Photonic platforms

Electro-optic polymer modulators for "Other" platforms including optical/quantum computing, HPC, and RF applications

EO polymers
enable higher
performance data
communications

Electro-optic polymer engines for fiber optic communications

Initial Target Markets

Polymers address a large, rapidly growing market

Fiber Communications

Photonics Applications	Photonics Components Market 2030*	Optical Transceivers* TAM (2022)	Optical Transceivers* TAM (2030)	Partner Type	Opportunity for Integrated Photonics (PICs) (Polymer, SiPh, InP)
Fiber comms	~\$60-80B	\$7B	~\$40-60B	Foundry, OEM/CM (TxRx)	Existing/very strong growth
HPC/compute/Al	~\$10-20B	\$1B	~\$10-15B	Foundry, OEM/CM (TxRx)	Existing/very strong growth
DCI/datacenter	~\$20-30B	\$9B	~\$20-30B	Foundry, OEM/CM (TxRx)	Existing/strong growth
5G systems/back haul/RF	~\$5-10B	~\$1-2B	~\$4-8B	Foundry, OEM/CM (TxRx)	Existing/strong growth
Display/project	~\$10-20B	<\$1B	~\$5-15B	Foundry, OEM/CM (panel)	High-volume/strong forecast
Automotive (LIDAR)	~\$30-50B	~\$1-2B	~\$20-30B	Foundry, OEM/CM (LIDAR)	High-volume & very strong forecast
Optical sensing/3D	~\$4-10B	~\$1-2B	~\$2-5B	Foundry, OEM/CM (sensor)	High-volume & solid forecast
Bio-photonic sensing	~\$2-5B	<\$1B	~\$2-3B	Foundry, OEM/CM	Strong forecast
Medical	~\$5-10B	<\$1B	~\$5-8B	Foundry, OEM/CM	Strong forecast
Instrumentation	~\$2-3B	<\$1B	~\$1-2B	Foundry, OEM/CM	Strong forecast

fabrication)

High

Polymers are Ideal for Silicon Foundries...

Low

Low/Difficult

Polymer positioning for heterogeneous integration is aligns with silicon foundries very well

Leveraging Silicon Ecosystem

Scalability with 200mm Wafers

- Polymers can easily fit into silicon foundries compared to legacy and new exotic materials
- Polymers extend silicon photonics performance
- Polymers meet the performance for datacenter applications

Volume scale silicon slot designs on 200mm wafers

Image from Commercial Foundry – Industry Standard Design

Heterogeneous Polymer Slot Modulator

Our polymers are easily fabricated in silicon fabs → ideal for heterogenous integration

- **Heterogeneous integration** of polymer on Silicon **Photonics Platform**
- Low drive voltage and small form factor for low power consumption and high density
- Very high bandwidth (70-100GHz)
- Fabricated onto 200mm silicon wafers

3rd party use of Perkinamine® LWLG polymers

LIGHTWAVELOGIC®

- World class performance EO polymers used for 400G lanes
- Next generation node for datacenters
- Potential to enable 4 lane pluggable transceiver at 1.6Tbps & 8 lane at 3.2Tbps

Implementing a New Technology Platform

Licensing model provides inherent scalability

Technology

Chromophore & Polymer Matrix IP

Devices & PIC Architecture IP

Fabrication & Processing

High Speed Package & Assembly Design IP

3 Prong Strategy

Product Sales

Patent Licensing*

Technology Transfer

Goals to Drive Revenue

Make polymers ubiquitous (just like OLEDs)

Have device/PIC teams use EO polymers in their device/PIC designs

Supply polymer modulator OSAs for transceivers

Have foundries use EO polymers in PIC PDKs

Patent licensing and product sales to drive revenue

Source: Lightwave Logic (LWLG)

Patents Drive Licensing Opportunities

Robust intellectual property (IP) portfolio enables licensing & tech transfer for long term revenue generation

- Develop and license polymerbased technologies that are engines for the internet, optical networking, data centers
- Patent portfolio creates a strong moat and know-how to carve out a leadership position with high speed, low power EO polymers
- Proprietary EO polymers are continually strengthened to fortify the patent moat, currently with over 70 patents issued and pending

Focus on data communications, datacenter market segments

LIGHTWAVELOGIC*

Initial Licensing Agreement

Secured initial market acceptance for polymer technology

First Perkinamine® customer licensing agreement secured in May 2023

Agreement Structure:

- LWLG to supply EO material
- License initiation fee
- Royalties (% per unit)
- Minimum royalty
- Minimum sales volume (units)

Represents commercial market acceptance of our polymers, with follow-on licensees in progress

Commercial Partnering – AMF foundry

LIGHTWAVELOGIC

- Turbo-charging silicon photonics
- Partnering for polymer slot modulators on 200mm silicon wafers
- Puts Lightwave in a strong position to ramp volume both for polymers as well as 200-mm silicon wafer volume with AMF

A High Mix specialty commercial foundry for integrated optics manufacturing

AMF Transceiver Reference Design

Edge Coupler

Comprehensive PDK

Source: AMF; https://www.advmf.com

LIGHTWAVELOGIC

Recent technology demonstrations of our polymer modulators

World class results

• Ideal for 800Gbps pluggable transceiver market with 200G lanes

Types of visitors

- Commercial Tier 1 companies include:
 - Hyperscaler/Datacenter companies
 - Telecom system companies
 - Optical system corporations
 - Optical component/transceiver corporations
 - OSATs (Outsources Semiconductor Assembly and Test)
 - CMs (Contract Manufacturers)
 - Silicon Foundries
- Research analysts
- Universities
- Defense industry

Combined licensing/product interest

Over 25 commercial visitors this year

Near Term Commercial Activities & Goals

Initial commercial activity developing well and is expected to grow in 2025

Industry Dynamics

- Hyperscalers, AI & Quantum computing focused solution providers
- Turbo-boosting Silicon Photonics Platform
- Achieving 800G performance specifications at O-band

Prospects

Recent demonstrations of polymer modulators have generated many prospects

Leads

Review interest and relationships (testing/trial runs of technology)

Selection

Selection of key partners for volume scale

Customers

Plan is to enable volume scale

$2024 \rightarrow 2025$

Engagement with companies for both materials supply licensing as well as polymer modulator prototypes

23 Source: LWLG internal data

Maturing our Perkinamine® Platform

We are enabling polymer devices to extend silicon photonics using our EO polymers...

Maturing our electro-optic polymer platform using partnering

Scaling for Growth

We have the team and facilities to make polymer chromophore and

polymer slot modulators ubiquitous

Expanded Lightwave Logic facility is complete and operational:

 Acquired almost 10,000 sq ft adjoining current facility, representing a 70% increase in available space

- New space is being used for:
 - Production device test and evaluation center
 - Production reliability center
 - Laser characterization center
 - SEM analysis center
 - Expansion of chemical synthesis production line
 - Office and meeting space for additional staff

New space supports notable recent hires, including:

- Organic and computational chemists
- Material science and device engineers
- Packaging and reliability engineers

Experienced Management & Board

Dr. Michael S. Lebby Chairman & CEO

35+ years experience in photonics & semiconductors

Mr. Jim Marcelli President & COO

35+ years experience in finance & operations

Ronald A. Bucchi **Independent Director**

35+ years experience in accounting & finance

35+ years leadership in optical modulators & systems

Siraj Nour El-Ahmadi **Independent Director**

30+ years leadership experience in telecom network equipment

Craig Ciesla Independent Director

25+ years experience in technology and engineering

Laila Partridge Independent Director

30+ years experience in technology, corporate innovation and finance

Summary

Turbo-charging silicon photonics with polymers for commercial traction...

- Large & Growing Addressable Market: Optical pluggable transceivers market >\$100B by 2030
- **Proprietary EO Polymer Technology:** Demonstrated 200Gbps 1V performance in 2024.
- Commercialization Underway: Increased activity from packaged slot modulator demonstrations for material supply licensing and prototyping from Tier 1s
- Robust Patent Portfolio: Over 70+ patents and patents pending
- Robust Balance Sheet: \$30M+ cash position provides significant optionality
- **Building a Foundation:** Partnering with commercial silicon foundry for 200mm wafers.

Investor Relations Contact

Lucas A. Zimmerman
MZ Group - MZ North America
949-259-4987
LWLG@mzgroup.us
mzgroup.us

LIGHTWAVELOGIC

Faster by Design

lightwavelogic.com

369 Inverness Parkway, Suite 350 Englewood, CO 80112

Product Roadmap

Our technology roadmap emphasizes our unique value for commercialization

Time

PAM4 = Pulse Amplitude

Modulation at 4 levels

(step waveform)

Open eyes mean no errors

2 levels \rightarrow 1 bit

NRZ
1 bit per symbol

4 levels \rightarrow 2 bits

PAM4 2 bits per symbol

- Open Eyes mean high quality transmission and no errors
- For Same Bandwidth PAM4 as Double the Capacity
- Eyes show superposed traces for many sequential bits
- Show the levels and the transitions for any different data pattern, i.e. any different sequence of 1's and 0's

World-Class Performance...

90 Gbaud, 180 Gbit/s, V_{drive} < 2 V

100 Gbaud, 200 Gbit/s, V_{drive} < 2 V

53 Gbaud, 106 Gbit/s, V_{drive} < 2 V

53 Gbaud, 106 Gbit/s, V_{drive} < 2 V

Drive Voltage ~1V

Up to 100GBaud PAM4 (200Gbps)

Open eyes...

Open eyes...

Ideal for low voltage 800Gbps 4 channel pluggable transceivers

Appendix: Industry Roadmap to Higher Speeds

Next is 800G...

Appendix: Drive to Higher Lane Speeds

"in many ways
polymers will be an
ideal enabler of the
growth expected in
Infiniband usage"

Infiniband is a key enabler for NVIDIA

higher speeds are required now

Lane key

Appendix: Industry Drive to Higher Lane Speeds

Recent results are an important step forward

Appendix: Industry Roadmap Cont.

Polymers fill the roadmap...

Lane key